Characterization of Three Ocular Clinical Isolates of P. aeruginosa: Viability, Biofilm Formation, Adherence, Infectivity, and Effects of Glycyrrhizin
نویسندگان
چکیده
We selectively characterized three isolates from Pseudomonas aeruginosa keratitis patients and how glycyrrhizin (GLY) affected them. Type III toxins were determined using polymerase chain reaction (PCR). Minimum Inhibitory Concentration (MIC) of GLY and assays for its effects on: time kill, bacterial permeability, and biofilm/adhesion were done. In vivo, C57BL/6 (B6) mice were treated topically with GLY after G81007 infection. Clinical score, photography with a slit lamp and RT-PCR were used to assess treatment effects. Isolates expressed exoS and exoT, but not exoU. MIC for all isolates was 40 mg/mL GLY and bacteriostatic effects were seen for G81007 after treatment using time kill assays. From viability testing, GLY treatment significantly increased the number of permeabilized bacteria (live/dead assay). Isolates 070490 and G81007 formed more biofilms compared with R59733 and PAO1 (control). GLY-treated bacteria had diminished biofilm compared with controls for all isolates. GLY reduced adherence of the G81007 isolate to cultured cells and affected specific biofilm associated systems tested by reverse transcription PCR (RT-PCR). In vivo, after G81007 infection, GLY treatment reduced clinical score and messenger RNA (mRNA) expression of IL-1β, TNF-α, CXCL2 and HMGB1. This study provides evidence that GLY is bacteriostatic for G81007. It also affects biofilm production, adherence to cultured cells, and an improved keratitis outcome.
منابع مشابه
Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids
Objective(s):The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods:The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acidonbiofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginos...
متن کاملCorelation between antibiotic resistans and biofilm formation power of Pseudomonas aeruginosa
P. aeruginosa has been mentioned as the major causative agents of nosocomial infections. Pseudomonas infections are often serious and show different resistance to treatment due to distribution of antimicrobial resistance. Meanwhile, some strains are also able to form biofilm during contamination, which help bacteria to be even more persisyant to yreatment. We examined the antibiotic resistance ...
متن کاملThe association of biofilm formation and sub-minimal inhibitory concentrations of antimicrobial agents
Introduction: Although bacteria producing biofilm are more resistance to antimicrobial agents, biofilm formation can stimulated by sub-minimal inhibitory concentrations (sub-MICs) of some antimicrobial agents. Therefore, we designed present study to investigate the in vitro efficacy of several antibiotics (including ceftazidime, piperacillin, ticarcillin, carbenicillin, aztreonam, merop...
متن کاملStudy of antimicrobial effects of several antibiotics and iron oxide nanoparticles on biofilm producing pseudomonas aeruginosa
Objective(s): Pseudomonas aeruginosa is a nosocomial pathogen resistant to most antimicrobial treatments. Furthermore, it persists in adverse environments thereby forming biofilms on various surfaces. Researchers have therefore focused on antibiofilm strategies using nanoparticles due to their unique physicochemical properties. Superparamagnetic iron oxide nanoparticles (SIONPs) have recently s...
متن کاملIn vitro activity of Quercus brantii extracts against biofilm- producing Pseudomonas aeruginosa
Background: Biofilm formation by Pseudomonas aeruginosa is a serious concern in treatment of diseases and medical industries. Natural products that originate in plants can influence microbial biofilm formation. The effect of ethyl acetate, methanol and water- methanol extracts of Quercus brantii on biofilm formation and biofilm disruption of P. aeruginosa were investigated in this study. Methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017